Selection and Sorting of Heterogeneous Firms Through Competitive Pressures

Kiminori Matsuyama Northwestern University Philip Ushchev ECARES, Université Libre de Bruxelles

Last Updated: 2024-01-18; 5:20:54 AM

Teaching Slides

Introduction

Competitive Pressures on Heterogeneous Firms

Main Questions: How do more *competitive pressures*, due to entry of new firms, caused by lower *entry cost* or larger *market size*, affect firms with different productivity?

- Selection of firms
- Distribution of firm size (in revenue, profit and employment), Distribution of markup and pass-through rates, etc.
- Sorting of firms across markets with different market sizes

Existing Monopolistic Competition Models with Heterogenous Firms

- Melitz (2003): under CES Demand System (DS)
 - MC firms sell their products at an exogenous & common markup rate, *unresponsive to competitive pressures*
 - Market size: no effect on distribution of firm types nor their behaviors; All adjustments at *the extensive margin*.
 - Firms' incentive to move across markets with different market sizes independent of firm productivity *Inconsistent with some evidence for*
 - An increase in the production cost leads to less than proportional increase in the price (the pass-through rate < 1)
 - More productive firms have higher markup rates
 - More productive firms have lower pass-through rates
- Melitz-Ottaviano (2008) departs from CES with Linear Demand System + the outside competitive sector, which comes with its own restrictions.

This Paper: Melitz under **H.S.A.** Demand System as a framework to study how departing from CES in the direction consistent with the evidence affects the impact of competitive pressures on heterogeneous firms.

Symmetric H.S.A. (Homothetic with a Single Aggregator) DS with Gross Substitutes

Think of a competitive final goods industry generating demand for a continuum of **intermediate inputs** $\omega \in \Omega$, with **CRS production function:** $X = X(\mathbf{x})$; $\mathbf{x} = \{x_{\omega}; \omega \in \Omega\} \Leftrightarrow$ Unit cost function, $P = P(\mathbf{p})$; $\mathbf{p} = \{p_{\omega}; \omega \in \Omega\}$.

Market share of ω depends *solely* on a single variable, its own price normalized by the *common* price aggregator

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right), \quad \text{where} \quad \int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \equiv 1.$$

- s: ℝ₊₊ → ℝ₊: the market share function, C³, decreasing in the normalized price z_ω ≡ p_ω/A for s(z_ω) > 0 with

 lim_{z→z̄}s(z) = 0. If z̄ ≡ inf{z > 0|s(z) = 0} < ∞, z̄A(p) is the choke price.
- A = A(**p**): the common price aggregator defined implicitly by the adding-up constraint ∫_Ω s(p_ω/A)dω ≡ 1.
 A(**p**) linear homogenous in **p** for a fixed Ω. A larger Ω reduces A(**p**).

CES
$$s(z) = \gamma z^{1-\sigma};$$
 $\sigma > 1$ Special CasesTranslog Cost Function $s(z) = \gamma \max\{-\ln(z/\bar{z}), 0\};$ $\bar{z} < \infty$ Constant Pass Through
(CoPaTh) $s(z) = \gamma \max\left\{\left[\sigma + (1-\sigma)z^{\frac{1-\rho}{\rho}}\right]^{\frac{\rho}{1-\rho}}, 0\right\}$ $0 < \rho < 1$ As $\rho \nearrow 1$, CoPaTh converges to CES with $\bar{z}(\rho) \equiv (\sigma/(\sigma-1))^{\frac{\rho}{1-\rho}} \to \infty$

 $P(\mathbf{p})$ vs. $A(\mathbf{p})$

Definition:
$$s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) = s(z_{\omega})$$
 where $\int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1$

By differentiating the adding-up constraint,

$$\frac{\partial \ln A(\mathbf{p})}{\partial \ln p_{\omega}} = \frac{[\zeta(z_{\omega}) - 1]s(z_{\omega})}{\int_{\Omega} [\zeta(z_{\omega'}) - 1]s(z_{\omega'})d\omega'} \neq s(z_{\omega}) = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}$$

unless $\zeta(z_{\omega})$ is constant, where

Price Elasticity
Function:
$$\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 1 \Leftrightarrow s(z) = \gamma \exp\left[\int_{z_0}^z \frac{1 - \zeta(\xi)}{\xi} d\xi\right]; \lim_{z \to \overline{z}} \zeta(z) = \infty, \text{ if } \overline{z} < \infty.$$

By integrating the definition,

$$\frac{A(\mathbf{p})}{P(\mathbf{p})} = c \exp\left[\int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \Phi\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega\right], \quad \text{where} \quad \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{\bar{z}} \frac{s(\xi)}{\xi} d\xi$$

Note: $A(\mathbf{p})/P(\mathbf{p})$ is not constant, unless CES $\Leftrightarrow \zeta(z) = \sigma \Leftrightarrow s(z) = \gamma z^{1-\sigma} \Leftrightarrow \Phi(z) = 1/(\sigma - 1)$.

 \checkmark $A(\mathbf{p})$, the inverse measure of *competitive pressures*, captures *cross price effects* in the DS, the reference price for MC firms

 \checkmark $P(\mathbf{p})$, the inverse measure of TFP, captures the *productivity effects* of price changes, the reference price for consumers.

✓ $\Phi(z)$, the measure of "love for variety." Matsuyama & Ushchev (2023). $\zeta'(\cdot) \ge 0 \Rightarrow \Phi'(\cdot) \ge 0$; $\Phi'(\cdot) = 0 \Leftrightarrow \zeta'(\cdot) = 0$.

Note: Our 2017 paper proved the integrability = the quasi-concavity of $P(\mathbf{p})$, iff $\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 0$.

Why H.S.A.

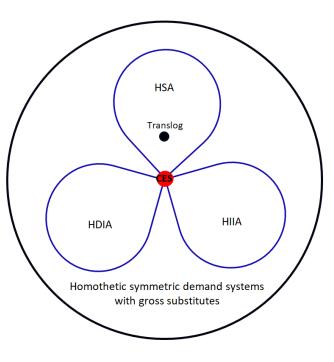
- Homothetic (unlike the linear DS and most other commonly used non-CES DSs)
 - a single measure of market size; the demand composition does not matter.
 - isolate the effect of endogenous markup rate from nonhomotheticity
 - straightforward to use it as a building block in multi-sector models with any upper-tier (incl. nonhomothetic) DS
- Nonparametric and flexible (unlike CES and translog, which are special cases)
 - can be used to perform robustness-check for CES
 - allow for (but no need to impose)
 - \checkmark the choke price,
 - ✓ Marshall's 2^{nd} law (Price elasticity is increasing in price) → more productive firms have higher markup rates
 - ✓ what we call the 3rd law (the rate of increase in the price elasticity is decreasing in price) → more productive firms have lower pass-through rates.
- **Tractable** due to **Single Aggregator** (unlike **Kimball**, which needs two aggregators), a *sufficient statistic* for competitive pressures, which acts like a *magnifier of firm heterogeneity*
 - guarantee the existence & uniqueness of free-entry equilibrium with firm heterogeneity
 - simple to conduct most comparative statics without *parametric* restrictions on demand or productivity distribution.
 - no need to assume zero overhead cost (unlike MO and ACDR)

• Defined by the market share function, for which data is readily available and easily identifiable.

Three Classes of Homothetic Demand Systems: Matsuyama-Ushchev (2017)

CES	$s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = f\left(\frac{p_{\omega}}{P(\mathbf{p})}\right)$	$\Leftrightarrow s_{\omega} \propto \left(\frac{p_{\omega}}{P(\mathbf{p})}\right)^{1-\sigma}$
H.S.A. (Homotheticity with a Single Aggregator)	$s_{\omega} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right),$	$\frac{P(\mathbf{p})}{A(\mathbf{p})} \neq c$, unless CES
HDIA (Homotheticity with Direct Implicit Additivity) Kimball is a special case:	$s_{\omega} = \frac{p_{\omega}}{P(\mathbf{p})} (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right),$	$\frac{P(\mathbf{p})}{B(\mathbf{p})} \neq c$, unless CES
HIIA (Homotheticity with Indirect Implicit Additivity)	$s_{\omega} = \frac{p_{\omega}}{C(\mathbf{p})} \theta' \left(\frac{p_{\omega}}{P(\mathbf{p})}\right),$	$\frac{P(\mathbf{p})}{C(\mathbf{p})} \neq c$, unless CES

Here we consider a continuum of varieties ($\omega \in \Omega$), gross substitutes, and symmetry



 $\phi(\cdot) \& \theta(\cdot)$ are both increasing & concave $\rightarrow (\phi')^{-1}(\cdot) \& \theta'(\cdot)$ positive-valued & decreasing. $A(\cdot), B(\cdot), C(\cdot)$ all determined by the adding-up constraint.

The 3 classes are pairwise disjoint with the sole exception of CES.

Under HDIA(Kimball) and HIIA, unlike HSA

- Two aggregators needed for the market shares. [One aggregator enough for the price elasticity under all 3 classes.]
- The existence and uniqueness of free-entry equilibrium not guaranteed without some strong restrictions on both productivity distribution and the price elasticity function.

Melitz under HSA: Main Results

- Existence & Uniqueness of Equilibrium: straightforward under H.S.A.
- Melitz under CES: impacts of entry/overhead costs on the masses of entrants/active firms hinges on the sign of the derivative of the elasticity of the pdf of marginal cost; Pareto is the knife-edge! (new results!)
- Cross-Sectional Implications: profits and revenues are always higher among more productive.
 2nd Law = incomplete pass-through ⇔ the procompetitive effect ⇔ strategic complementarity in pricing.
 2nd (3rd) Law → more productive firms have higher markup (lower pass-through) rates.
 2nd & 3rd Laws → hump-shaped employment; more productive hire less under high overhead.
- General Equilibrium Comparative Statics
 - *Entry cost* \downarrow : 2nd (3rd) Law → markup rates \downarrow (pass-through rates \uparrow) for all firms.

profits (revenues) decline faster among less productive \rightarrow a tougher selection.

- Overhead cost \downarrow : similar effects when the employment is decreasing in firm productivity.
- *Market size* \uparrow : 2nd (3rd) Law \rightarrow markup rates \downarrow (pass-through rates \uparrow) for all firms.

profits (revenues) \uparrow among more productive; \downarrow among less productive.

- *Due to the composition effect*, these changes may *increase* the average markup rate & the aggregate profit share in spite of 2nd Law and *reduce* the average pass-through in spite of 3rd Law; Pareto is the knife-edge *for entry cost* ↑.
- Sorting of Heterogeneous Firms across markets that differ in size: Larger markets → more competitive pressures.
 2nd Law → more (less) productive go into larger (smaller) markets.
 - Composition effect, average markup (pass-through) rates can be higher (lower) in larger and more competitive markets in spite of 2nd (3rd) Law.

(Highly Selective) Literature Review

Non-CES Demand Systems: Matsuyama (2023) for a survey; H.S.A. Demand System: Matsuyama-Ushchev (2017)

MC with Heterogeneous Firms: Melitz (2003) and many others: Melitz-Redding (2015) for a survey

MC under non-CES demand systems: Thisse-Ushchev (2018) for a survey

- Nonhomothetic non-CES:
 - $U = \int_{\Omega} u(x_{\omega}) d\omega$: Dixit-Stiglitz (77), Behrens-Murata (07), ZKPT (12), Mrázová-Neary(17), Dhingra-Morrow (19); ACDR (19)
 - Linear-demand system with the outside sector: Ottaviano-Tabuchi-Thisse (2002), Melitz-Ottaviano (2008)
- *Homothetic non-CES:* Feenstra (2003), Kimball (1995), Matsuyama-Ushchev (2020a,b, 2023)
- H.S.A. Matsuyama-Ushchev (2022), Kasahara-Sugita (2020), Grossman-Helpman-Lhuiller (2021), Fujiwara-Matsuyama (2022), Baqaee-Fahri-Sangani (2023)

Empirical Evidence: The 2nd Law: DeLoecker-Goldberg (14), Burstein-Gopinath (14); The 3rd Law: Berman et.al.(12), Amiti et.al.(19), Market Size Effects: Campbell-Hopenhayn(05); Rise of markup: Autor et.al.(20), DeLoecker et.al.(20)

Selection of Heterogeneous Firms through Competitive Pressures

Melitz-Ottaviano (2008), Baqaee-Fahri-Sangani (2023), Edmond-Midrigan-Xu (2023)

Sorting of Heterogeneous Firms Across Markets:

- Reduced Form/Partial Equilibrium; Mrázová-Neary (2019), Nocke (2006)
- General Equilibrium: Baldwin-Okubo (2006), Behrens-Duranton-RobertNicoud (2014), Davis-Dingel (2019), Gaubert (2018), Kokovin et.al. (2022)

Log-Super(Sub)modularity: Costinot (2009), Costinot-Vogel (2015)

Selection of Heterogeneous Firms: A Single-Market Setting

A Static, Closed Economy Version of Melitz (2003), extended to H.S.A.

Households: supply labor (numeraire) by L, consume the final good by X with the budget constraint, PX = L.

Final Good Producers: competitive, assemble **intermediate inputs** $\omega \in \Omega$, using **CRS technology**

Production Function:
$$X = X(\mathbf{x}) \equiv \min_{\mathbf{p}} \left\{ \mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega \ \middle| P(\mathbf{p}) \ge 1 \right\}$$
Unit Cost Function: $P = P(\mathbf{p}) \equiv \min_{\mathbf{x}} \left\{ \mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega \ \middle| X(\mathbf{x}) \ge 1 \right\}$

Note: Both $X(\mathbf{x})$ and $P(\mathbf{p})$ can be a primitive of CRS technology, as long as linear homogeneity, monotonicity and quasi-concavity are satisfied.

Demand Curve for ω : $x_{\omega} = X(\mathbf{x}) \frac{\partial P(\mathbf{p})}{\partial p_{\omega}}$; **Inverse Demand Curve for** ω : $p_{\omega} = P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x_{\omega}}$ **Market Size:** $\mathbf{p}\mathbf{x} = P(\mathbf{p})X(\mathbf{x}) = L$

Note: This is due to the one-market setting. In a multi-market extension later, size of each market differs from *L*.

Symmetric H.S.A. (Homothetic with a Single Aggregator) with Gross Substitutes

Market Share of ω depends *solely* on a single variable, its own price normalized by the *common* price aggregator

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right), \quad \text{where} \quad \int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \equiv 1.$$

- s: ℝ₊₊ → ℝ₊: the market share function, C³, decreasing in the normalized price; z_ω ≡ p_ω/A for s(z_ω) > 0 with

 lim_{z→z̄}s(z) = 0. If z̄ ≡ inf{z > 0|s(z) = 0} < ∞, z̄A(p) is the choke price.
- A = A(**p**): the common price aggregator defined implicitly by the adding up constraint ∫_Ω s(p_ω/A)dω ≡ 1.
 A(**p**) linear homogenous in **p** for a fixed Ω. A larger Ω reduces A(**p**).

CES
$$s(z) = \gamma z^{1-\sigma};$$
 $\sigma > 1$ Special CasesTranslog $s(z) = -\gamma \max\left\{\ln\left(\frac{z}{\bar{z}}\right), 0\right\};$ $\bar{z} < \infty$ Constant Pass Through
(CoPaTh) $s(z) = \gamma \max\left\{\left[\sigma + (1-\sigma)z^{\frac{1-\rho}{\rho}}\right]^{\frac{\rho}{1-\rho}}, 0\right\}$ $0 < \rho < 1$ As $\rho \nearrow 1$, CoPaTh converges to CES with $\bar{z}(\rho) \equiv (\sigma/(\sigma-1))^{\frac{\rho}{1-\rho}} \to \infty$.

$P(\mathbf{p})$ vs. $A(\mathbf{p})$

Definition:

$$s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \equiv s(z_{\omega}), \quad \text{where} \quad \int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1.$$

By differentiating the adding-up constraint,

$$\frac{\partial \ln A(\mathbf{p})}{\partial \ln p_{\omega}} = \frac{[\zeta(z_{\omega}) - 1]s(z_{\omega})}{\int_{\Omega} [\zeta(z_{\omega'}) - 1]s(z_{\omega'})d\omega'} \neq s(z_{\omega}) = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}$$

unless $\zeta(z_{\omega})$ is constant, where

Price Elasticity
Function:

$$\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_{s}(z) > 1 \Leftrightarrow s(z) = \gamma \exp\left[\int_{z_{0}}^{z} \frac{1 - \zeta(\xi)}{\xi} d\xi\right] \text{ for } z \in (0, \bar{z}); \lim_{z \to \bar{z}} \zeta(z) = \infty, \text{ if } \bar{z} < \infty.$$
By integrating the definition,

$$\frac{A(\mathbf{p})}{P(\mathbf{p})} = c \exp\left[\int_{\Omega}^{z} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \Phi\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega\right], \text{ where}$$

$$\Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{\bar{z}} \frac{s(\xi)}{\xi} d\xi$$

Note: $A(\mathbf{p})/P(\mathbf{p})$ is not constant, unless CES $\Leftrightarrow \zeta(z) = \sigma \Leftrightarrow s(z) = \gamma z^{1-\sigma} \Leftrightarrow \Phi(z) = 1/(\sigma - 1)$.

- \checkmark A(**p**), the inverse measure of *competitive pressures*, captures *cross price effects* in the demand system.
- \checkmark P(**p**), the inverse measure of TFP, captures the *productivity consequences* of price changes.
- ✓ $\Phi(z)$, the measure of "love for variety." Matsuyama & Ushchev (2023). $\zeta'(\cdot) \ge 0 \Rightarrow \Phi'(\cdot) \ge 0$; $\Phi'(\cdot) = 0 \Leftrightarrow \zeta'(\cdot) = 0$.

Note: Our 2017 paper proved the integrability = the quasi-concavity of $P(\mathbf{p})$, iff $\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 0$.

Monopolistically Competitive Intermediate Inputs Producers $\omega \in \Omega$

Timing: the same with Melitz.

- Sunk cost of entry, $F_e > 0$. (All costs are paid in labor.)
- Each entrant draws its (quality-adjusted) marginal $\cot \psi \sim G(\cdot) \in C^3$ with $G'(\psi) = g(\psi) > 0$ on $(\underline{\psi}, \overline{\psi}) \subseteq (0, \infty)$. $\mathcal{E}_G(\psi) \equiv \psi g(\psi) / G(\psi) \in C^2$ and $\mathcal{E}_g(\psi) \equiv \psi g'(\psi) / g(\psi) \in C^1$. MC firms are ex-post heterogeneous *only* in ψ , or equivalently, in (quality-adjusted) productivity, $1/\psi = \varphi \sim 1 - G(1/\varphi)$ with density $g(1/\varphi) / \varphi^2 > 0$ on $(\underline{\varphi}, \overline{\varphi}) \subseteq (0, \infty)$.
- Each firm decides either to exit without producing or to stay & produce with an overhead cost, F > 0.
- Firms that stay will sell their products at the profit-maximizing prices.

Pricing Behaviors of MC firms after drawing ψ_{ω} : Each firm takes $A = A(\mathbf{p})$ and $\mathbf{px} = L$ given.

$$\max_{p_{\omega}}(p_{\omega} - \psi_{\omega})x_{\omega} = \max_{\psi_{\omega} < p_{\omega} < \bar{z}A} \left(1 - \frac{\psi_{\omega}}{p_{\omega}}\right)s\left(\frac{p_{\omega}}{A}\right)L = \max_{\psi_{\omega}/A < z_{\omega} < \bar{z}} \left(1 - \frac{\psi_{\omega}/A}{z_{\omega}}\right)s(z_{\omega})L$$

where $z_{\omega} \equiv p_{\omega}/A$ is the normalized price.

Price Elasticity Function

$$\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 1,$$

 $z_{\omega}\left[1-\frac{1}{z_{\omega}}\right]=\frac{\psi_{\omega}}{1-\frac{1}{z_{\omega}}}$

for $z \in (0, \bar{z})$ with $\lim_{z \to \bar{z}} \zeta(z) = -\lim_{z \to \bar{z}} \mathcal{E}_s(z) = \infty$, if \bar{z} is finite. The markup rate is $\zeta(z_{\omega})/(\zeta(z_{\omega}) - 1)$.

We maintain the following *regularity* assumption for ease of exposition.

(A1): For all $z \in (0, \overline{z})$, $\mathcal{E}_{z(\zeta-1)/\zeta}(z) > 0 \Leftrightarrow \mathcal{E}_{\zeta/(\zeta-1)}(z) < 1 \Leftrightarrow \mathcal{E}_{s/\zeta}(z) = \mathcal{E}_s(z) - \mathcal{E}_{\zeta}(z) < 0$

- (A1) means that $\zeta(z)/(\zeta(z) 1)$ cannot go up as fast as z. \rightarrow (A1) holds with decreasing $\zeta(\cdot)/(\zeta(\cdot) - 1) \leftrightarrow$ increasing $\zeta(\cdot)$, i.e., under A2 (Marshall's 2nd Law.
- (A1) means the marginal revenue is strictly increasing in p_{ω} (hence strictly decreasing in x_{ω}) \rightarrow FOC determines the profit maximizing z_{ω} as an increasing C^2 function of ψ_{ω}/A .
 - \rightarrow Firms with the same ψ set the same price, earn the same profit \rightarrow we index firms by ψ , as $p_{\psi}, z_{\psi} \equiv p_{\psi}/A$.
- (A1) ensures that the maximized profit $s(\cdot)L/\zeta(\cdot)$ is a decreasing C^2 function of ψ_{ω}/A . Without (A1), the maximizing price would be piecewise-continuous (i.e., the price would jump up at some values of ψ) and the maximized profit would be piecewise-differentiable, which would complicate the analysis.

Monopolistic Competition under H.S.A.: Markup and Pass-Through Rates

Lerner Pricing Formula:

Under A1, LHS is strictly increasing, so the Inverse Function Theorem allows us to rewrite it as

Normalized Price:

$$\frac{p_{\psi}}{A} \equiv z_{\psi} = Z\left(\frac{\psi}{A}\right) \in (\psi/A, \bar{z}), Z'(\cdot) > 0;$$
Price Elasticity:

$$\zeta(z_{\psi}) = \zeta\left(Z\left(\frac{\psi}{A}\right)\right) \equiv \sigma\left(\frac{\psi}{A}\right) > 1;$$
Markup Rate:

$$\mu_{\psi} \equiv \frac{p_{\psi}}{\psi} = \frac{\sigma(\psi/A)}{\sigma(\psi/A) - 1} \equiv \mu\left(\frac{\psi}{A}\right) > 1$$

satisfying

$$\frac{1}{\sigma(\psi/A)} + \frac{1}{\mu(\psi/A)} = 1 \Leftrightarrow \left[\sigma\left(\frac{\psi}{A}\right) - 1\right] \left[\mu\left(\frac{\psi}{A}\right) - 1\right] = 1$$

Pass-Through Rate:

$$\rho_{\psi} \equiv \frac{\partial \ln p_{\psi}}{\partial \ln \psi} = \mathcal{E}_{Z}\left(\frac{\psi}{A}\right) \equiv \rho\left(\frac{\psi}{A}\right) = 1 + \mathcal{E}_{\mu}\left(\frac{\psi}{A}\right) = 1 - \frac{\mathcal{E}_{\sigma}(\psi/A)}{\sigma(\psi/A) - 1} > 0$$

 $z_{\psi}\left[1-\frac{1}{\zeta(z_{\psi})}\right] = \frac{\psi}{A}$

- Normalized price, and markup rate, all C² functions of the *normalized cost*, ψ/A only.
 Z'(·) > 0; always strictly increasing in ψ/A; Markup rate, strictly decreasing in ψ/A under A2
- Pass-through rate, a C^1 function of ψ/A only, strictly increasing in ψ/A under strong A3.
- Market size affects the pricing behaviors of firms only through its effects on A.
- More competitive pressures, a lower *A*, act like a magnifier of firm heterogeneity.

Under CES, $\sigma(\cdot) = \sigma$; $\mu(\cdot) = \sigma/(\sigma - 1) = \mu$; $\rho(\cdot) = 1$.

Revenue, Profit, and Employment

$$R_{\psi} = s\left(z_{\psi}\right)L = s\left(Z\left(\frac{\psi}{A}\right)\right)L \equiv r\left(\frac{\psi}{A}\right)L \implies \mathcal{E}_{r}\left(\frac{\psi}{A}\right) = \left[1 - \sigma\left(\frac{\psi}{A}\right)\right]\rho\left(\frac{\psi}{A}\right) < 0$$

(Gross) Profit

Revenue

$$\Pi_{\psi} = \frac{r(\psi/A)}{\sigma(\psi/A)} L \equiv \pi \left(\frac{\psi}{A}\right) L \qquad \Longrightarrow \qquad \mathcal{E}_{\pi} \left(\frac{\psi}{A}\right) = 1 - \sigma \left(\frac{\psi}{A}\right) < 0$$

(Variable) Employment

$$\psi x_{\psi} = \frac{r(\psi/A)}{\mu(\psi/A)} L \equiv \ell\left(\frac{\psi}{A}\right) L \qquad \qquad \Rightarrow \qquad \mathcal{E}_{\ell}\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right) \rho\left(\frac{\psi}{A}\right) \lessgtr 0$$

- Revenue $r(\psi/A)L$, profit $\pi(\psi/A)L$, employment $\ell(\psi/A)L$ all C^2 functions of ψ/A , multiplied by market size L.
- Their elasticities *E_r*(·), *E_π*(·) and *E_ℓ*(·) depend solely on *σ*(·) and *ρ*(·), hence all *C¹* functions of *ψ/A* only. More competitive pressures, a lower *A*, act like a magnifier of firm heterogeneity. Market size affects the relative profit, revenue, and employment across firms only through its effects on *A*.
 Under CES, *r*(·)/*π*(·) = *σ*; *r*(·)/*ℓ*(·) = *μ* = *σ*/(*σ* − 1) ⇒ *E_r*(·) = *E_ℓ*(·) = 1 − *σ* < 0.
- Both revenue $r(\psi/A)L$ and profit $\pi(\psi/A)L$ are always strictly decreasing in ψ/A .
- Employment $\ell(\psi/A)L$ may be nonmonotonic in ψ/A .
 - If the markup rate declines with ψ/A , employment cannot decline as fast as the revenue.
 - If the markup rate declines faster than the revenue, the employment is *increasing* in ψ/A .

General Equilibrium: Existence and Uniqueness: Assume $F + F_e < \pi(0)L$.

Cutoff Rule: Stay if $\psi < \psi_c$; exit if $\psi > \psi_c$, where

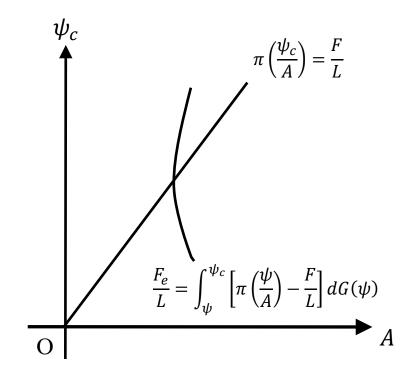
$$\max_{\psi_c} \int_{\underline{\psi}}^{\psi_c} \left[\pi\left(\frac{\psi}{A}\right) L - F \right] dG(\psi) \Longrightarrow \pi\left(\frac{\psi_c}{A}\right) L = F$$

positively-sloped. $A \downarrow$ (more competitive pressures) $\Rightarrow \psi_c \downarrow$ (tougher selection) rotate clockwise, as $F/L \uparrow$ (higher overhead/market size) $\Rightarrow \psi_c/A \downarrow$.

Free Entry Condition:

$$F_e = \int_{\underline{\psi}}^{\psi_c} \left[\pi \left(\frac{\psi}{A} \right) L - F \right] dG(\psi)$$

shift to the left as $F_e \downarrow$ (lower entry cost) $\Rightarrow A \downarrow$ (more competitive pressures).



 $A = A(\mathbf{p}) \text{ and } \psi_c: \text{ uniquely determined as } C^2 \text{ functions of } F_e/L \& F/L \text{ with the interior solution, } 0 < G(\psi_c) < 1 \text{ for}$ $0 < \frac{F_e}{L} < \int_{\underline{\psi}}^{\overline{\psi}} \left[\pi \left(\pi^{-1} \left(\frac{F}{L} \right) \frac{\psi}{\overline{\psi}} \right) - \frac{F}{L} \right] dG(\psi),$

which holds for a sufficiently small $F_e > 0$ with no further restrictions on $G(\cdot)$ and $s(\cdot)$. (This unique existence proof does not assume A2 and hence applies also to the Melitz model under CES.)

Equilibrium Mass of Firms. From the adding-up constraint, $1 \equiv \int_{\Omega} s(p_{\omega}/A)d\omega = M \int_{\psi}^{\psi_c} r(\psi/A)dG(\psi)$, $M = \left[\int_{\psi}^{\psi_c} r\left(\frac{\psi}{A}\right) dG(\psi)\right]^{-1} = \left[\int_{\xi}^{1} r\left(\pi^{-1}\left(\frac{F}{L}\right)\xi\right) dG(\psi_c\xi)\right]^{-1} > 0$ **Mass of entrants** $MG(\psi_c) = \left[\int_{\psi}^{\psi_c} r\left(\frac{\psi}{A}\right) \frac{dG(\psi)}{G(\psi_c)}\right]^{-1} = \left[\int_{\xi}^{1} r\left(\pi^{-1}\left(\frac{F}{L}\right)\xi\right) d\tilde{G}(\xi;\psi_c)\right]^{-1} > 0$ Mass of active firms = the measure of Ω where $\tilde{G}(\xi; \psi_c) \equiv \frac{G(\psi_c \xi)}{G(\psi_c)}$ is the cdf of $\xi \equiv \psi/\psi_c$, conditional on $\xi \equiv \psi/\psi_c < \xi \leq 1$. Lemma 1: $\mathcal{E}'_{g}(\psi) < 0 \Rightarrow \mathcal{E}'_{G}(\overline{\psi}) < 0$; $\mathcal{E}'_{g}(\overline{\psi}) \ge 0 \Rightarrow \mathcal{E}'_{G}(\psi) \ge 0$ with some boundary conditions. **Lemma 2:** A lower ψ_c shifts $\tilde{G}(\xi; \psi_c)$ to the right (left) in MLR if $\mathcal{E}'_a(\psi) < (>)0$ and in FSD if $\mathcal{E}'_G(\psi) < (>)0$. • Some evidence for $\mathcal{E}'_{q}(\psi) > 0 \Longrightarrow \psi_{c} \downarrow$ (tougher selection) shifts $\tilde{G}(\xi; \psi_{c})$ to the left. • Pareto-productivity, $G(\psi) = (\psi/\bar{\psi})^{\kappa} \Longrightarrow \mathcal{E}'_{a}(\psi) = \mathcal{E}'_{G}(\psi) = 0 \Longrightarrow \tilde{G}(\xi; \psi_{c})$ is independent of ψ_{c} . • Fréchet, Weibull, Lognormal; $\mathcal{E}'_g(\psi) < 0 \Rightarrow \mathcal{E}'_G(\psi) < 0 \Rightarrow \psi_c \downarrow$ (tougher selection) shifts $\tilde{G}(\xi; \psi_c)$ to the right. Lemma 4: The integrals in the equilibrium conditions are finite and hence the equilibrium is well-defined, if

 $\underline{\psi} > 0 \Leftrightarrow \overline{\varphi} < \infty \quad \text{or} \quad 1 + \lim_{z \to 0} \zeta(z) < 2 + \lim_{\psi \to 0} \mathcal{E}_g(\psi) = -\lim_{\varphi \to \infty} \mathcal{E}_f(\varphi) < \infty \text{ for } \underline{\psi} = 0 \Leftrightarrow \overline{\varphi} = \infty.$

Equilibrium can be solved recursively under H.S.A.!!

Under HDIA/HIIA, one needs to solve the 3 equations simultaneously for 3 variables, ψ_c & the two price aggregates.

Aggregate Labor Cost and Profit Shares and TFP

Notations:

The $w(\cdot)$ -weighted average of $f(\cdot)$ among the active firms, $\psi \in (\underline{\psi}, \psi_c)$	$\mathbb{E}_{w}(f) \equiv \frac{\int_{\underline{\psi}}^{\psi_{c}} f\left(\frac{\psi}{A}\right) w\left(\frac{\psi}{A}\right) dG(\psi)}{\int_{\underline{\psi}}^{\psi_{c}} w\left(\frac{\psi}{A}\right) dG(\psi)}.$	
The unweighted average of $f(\cdot)$ among the active firms, $\psi \in (\underline{\psi}, \psi_c)$	$\mathbb{E}_{1}(f) \equiv \frac{\int_{\underline{\psi}}^{\psi_{c}} f\left(\frac{\psi}{A}\right) dG(\psi)}{\int_{\underline{\psi}}^{\psi_{c}} dG(\psi)}.$	
$\implies \mathbb{E}_{w}\left(\frac{f}{w}\right) = \frac{\mathbb{E}_{1}(f)}{\mathbb{E}_{1}(w)} = \left[\mathbb{E}_{f}\left(\frac{w}{f}\right)\right]^{-1}.$		

Then,

Aggregate TFP	$\ln\left(\frac{X}{L}\right) = \ln\left(\frac{1}{P}\right) = \ln\left(\frac{c}{A}\right) + \mathbb{E}_{r}[\Phi \circ Z]$	
Aggregate Labor Cost Share (Average inverse markup rate)	$\frac{\mathbb{E}_1(\ell)}{\mathbb{E}_1(r)} = \mathbb{E}_r\left(\frac{1}{\mu}\right) = 1 - \left[\mathbb{E}_\pi\left(\frac{\mu}{\mu-1}\right)\right]^{-1} = \frac{1}{\mathbb{E}_\ell(\mu)}$	
Aggregate Profit Share (Average inverse price elasticity)	$\frac{\mathbb{E}_{1}(\pi)}{\mathbb{E}_{1}(r)} = \mathbb{E}_{r}\left(\frac{1}{\sigma}\right) = \frac{1}{\mathbb{E}_{\pi}(\sigma)} = 1 - \left[\mathbb{E}_{\ell}\left(\frac{\sigma}{\sigma-1}\right)\right]^{-1}$	
by applying the above formulae to $\pi(\cdot)/r(\cdot) = 1 - \ell(\cdot)/r(\cdot) = 1/\sigma(\cdot) = 1 - 1/\mu(\cdot)$,		

CES Benchmark: Revisiting Melitz

CES Benchmark: For all $z \in (0, \infty)$, $\zeta(z) = \sigma > 1 \Leftrightarrow s(z) = \gamma z^{1-\sigma}$.

Prici

Pricing:
$$p_{\psi}\left(1-\frac{1}{\sigma}\right) = \psi \Leftrightarrow \mu\left(\frac{\psi}{A}\right) = \frac{\sigma}{\sigma-1} > 1 \Rightarrow \rho\left(\frac{\psi}{A}\right) = 1$$

Markup rate constant; Pass-through rate equal to one.

Cutoff Rule:

Free Entry Condition:

$$\int_{\underline{\psi}}^{\psi_c} \left[c_0 L \left(\frac{\psi}{A} \right)^{1-\sigma} - F \right] dG(\psi) = F_e,$$

the intersection moves along

 $c_0 L \left(\frac{\psi_c}{\psi_c}\right)^{1-\sigma} = F_{...}$

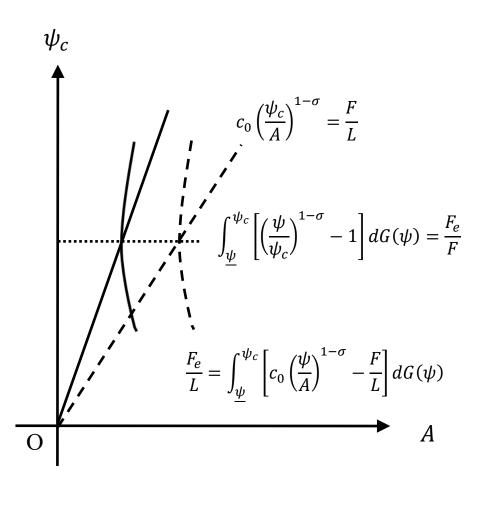
with $c_0 > 0$. As *L* changes,

$$\int_{\psi}^{\psi_c} \left[\left(\frac{\psi}{\psi_c} \right)^{1-\sigma} - 1 \right] dG(\psi) = \frac{F_e}{F}$$

 $F_e/F \downarrow$ and a FSD shift of $G(\cdot)$ to the left $\Rightarrow \psi_c \downarrow$ (tougher selection). ψ_c unaffected by L, and independent of A.

$$A = \psi_c \left(\frac{c_0 L}{F}\right)^{\frac{1}{1-\sigma}} = \left(\frac{c_0 L}{F_e} \int_{\underline{\psi}}^{\psi_c} [(\psi)^{1-\sigma} - (\psi_c)^{1-\sigma}] dG(\psi)\right)^{\frac{1}{1-\sigma}}$$

 $L\uparrow, F_e\downarrow, F\downarrow$, a FSD shift of $G(\cdot)$ to the left $\Rightarrow A\downarrow$ (more competitive pressures)



K. Matsuyama and P. Ushchev

CES Benchmark (Continue)

Revenue:

$$r\left(\frac{\psi}{A}\right)L = \sigma c_0 L \left(\frac{\psi}{A}\right)^{1-\sigma} = \sigma F \left(\frac{\psi}{\psi_c}\right)^{1-\sigma} \ge \sigma F$$
(Gross) Profi:

$$\pi\left(\frac{\psi}{A}\right)L = c_0 L \left(\frac{\psi}{A}\right)^{1-\sigma} = F \left(\frac{\psi}{\psi_c}\right)^{1-\sigma} \ge F$$
(Variable) Employment:

$$\ell\left(\frac{\psi}{A}\right)L = (\sigma - 1)c_0 L \left(\frac{\psi}{A}\right)^{1-\sigma} = (\sigma - 1)F \left(\frac{\psi}{\psi_c}\right)^{1-\sigma} \ge (\sigma - 1)F$$

All decreasing **power** functions of ψ with

$$\mathcal{E}_r\left(\frac{\psi}{A}\right) = \mathcal{E}_\pi\left(\frac{\psi}{A}\right) = \mathcal{E}_\ell\left(\frac{\psi}{A}\right) = 1 - \sigma < 0.$$

Relative size of two firms with ψ , $\psi' \in (\underline{\psi}, \psi_c)$, whether measured in the profit, employment, and revenue, unaffected by $L, F_e, F, G(\cdot)$, as well as A and ψ_c , and thus never change across equilibriums.

CES Benchmark (Continue)

Mass of entrants

Mass of active firms

$$M = \frac{L/\sigma}{F_e + G(\psi_c)F} = \frac{L}{\sigma F_e} \left[1 - \frac{1}{H(\psi_c)} \right]$$
$$MG(\psi_c) = \frac{L/\sigma}{F_e/G(\psi_c) + F} = \frac{L}{H(\psi_c)\sigma F}$$

where $H(\psi_c) \equiv \int_{\underline{\xi}}^1 (\xi)^{1-\sigma} \tilde{G}(\xi; \psi_c)$. Since $(\xi)^{1-\sigma}$ is decreasing, $H'(\psi_c) > (<)0$ if $\mathcal{E}'_G(\psi) < (>)0$ (Lemma 2).

Hence,

Proposition 1: Under CES,

- $L \uparrow$ keeps ψ_c unaffected; increases both *M* and $MG(\psi_c)$ proportionately;
- $F_e \downarrow$ reduces ψ_c ; increases *M*; increases (decreases) $MG(\psi_c)$ if $\mathcal{E}'_G(\psi) < (>)0$;
- $F \downarrow$ increases ψ_c ; increases $MG(\psi_c)$; increases (decreases) M if $\mathcal{E}'_G(\psi) < (>)0$;

A FSD shift of $G(\cdot)$ to the left reduces ψ_c with ambiguous effects on M and $MG(\psi_c)$, even if $G(\cdot)$ is a power.

Effects of Market Size *L* under CES:

- No effect on the markup rate.
- No effect on the cutoff, ψ_c
- No effect on the distribution of productivity, revenue, and employment across firms.
- Masses of entrants and of active firms change *proportionately*. All adjustments at *the extensive margin*.

Cross-Sectional Implications under 2nd and 3rd Laws

Marshall's 2nd Law (A2)

(A2):
$$\zeta'(z) > 0$$
 for all $z \in (0, \overline{z}) \Leftrightarrow \sigma'(\psi/A) > 0$ for all $\psi/A \in (0, \overline{z})$

Note: $A2 \Rightarrow A1$.

Lemma 5: For a positive-valued function of a single variable, $\psi/A > 0$,

$$sgn\left\{\frac{\partial^2 \ln f(\psi/A)}{\partial \psi \partial A}\right\} = -sgn\left\{\mathcal{E}_f'\left(\frac{\psi}{A}\right)\right\} = -sgn\left\{\frac{d^2 \ln f\left(e^{\ln(\psi/A)}\right)}{(d\ln(\psi/A))^2}\right\}$$

 $f(\psi/A) \log$ -super(sub)modular in $\psi \& A \Leftrightarrow \mathcal{E}'_f(\cdot) < (>)0 \Leftrightarrow \ln f(e^{\ln(\psi/A)})$ concave (convex) in $\ln(\psi/A)$

Proposition 2: Under A2,

$$0 < \rho\left(\frac{\psi}{A}\right) = 1 + \mathcal{E}_{\mu}\left(\frac{\psi}{A}\right) = 1 - \mathcal{E}_{1/\mu}\left(\frac{\psi}{A}\right) < 1$$

Less efficient firms operate at more elastic parts of demand and have lower markup rates

Procompetitive Effect/ Strategic Complementarity in Pricing

$$\frac{\partial \ln p_{\psi}}{\partial \ln A} = 1 - \rho \left(\frac{\psi}{A}\right) = -\mathcal{E}_{\mu} \left(\frac{\psi}{A}\right) = \mathcal{E}_{1/\mu} \left(\frac{\psi}{A}\right) > 0$$

More competitive pressures ($A \downarrow$ due to entry or lower prices of competing products) \rightarrow lower prices/markup rates.

$$\mathcal{E}'_{\pi}\left(\frac{\psi}{A}\right) < 0 \Leftrightarrow \frac{\partial^2 \ln \pi(\psi/A)}{\partial \psi \partial A} > 0$$

More competitive pressures $(A \downarrow) \rightarrow$ a proportionately larger decline in the profit among high- ψ firms \rightarrow a larger dispersion of the profit across firms; more concentration of profits among the productive.

Marshall's 3rd Law (A3):

(A3) (A3): Weak (Strong) Marshall's 3^{rd} Law of demand. For all $z \in (0, \overline{z})$,

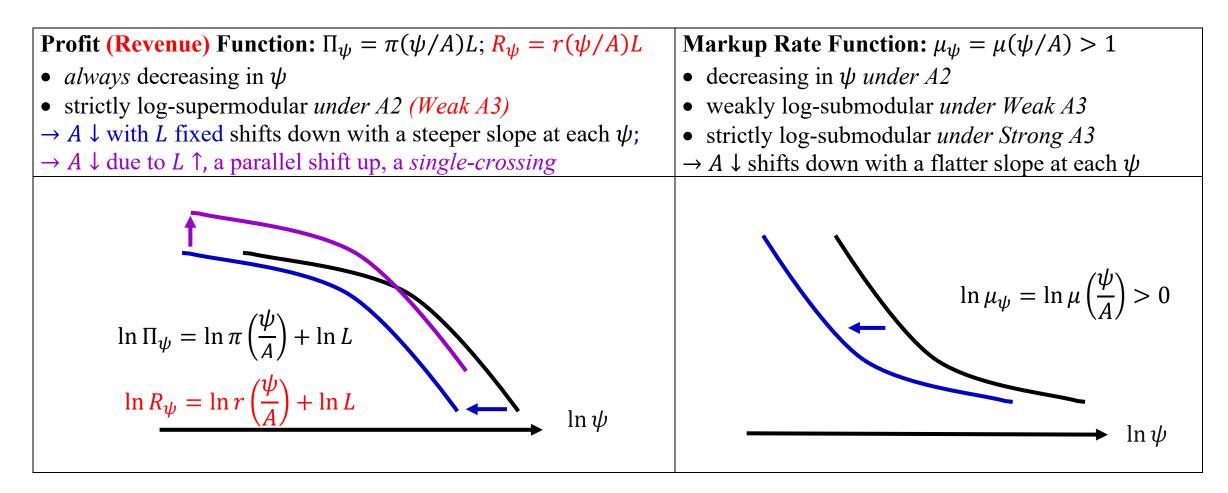
$$\mathcal{E}_{\zeta/(\zeta-1)}'(z) = -\frac{d}{dz} \left(\frac{z\zeta'(z)}{[\zeta(z) - 1]\zeta(z)} \right) \ge (>)0 \iff \rho'\left(\frac{\psi}{A}\right) = \mathcal{E}_{Z}'\left(\frac{\psi}{A}\right) = \mathcal{E}_{\mu}'\left(\frac{\psi}{A}\right) \ge (>)0$$

Strong A3 \rightarrow The markup rate declines at the lower rate for higher $z \rightarrow$ The pass-through rate higher for higher ψ . • A3 has some empirical support. Translog violates A3. CoPaTh satisfies Weak A3 but not Strong A3. Proposition 3: Under A3(A3),

Weak (Strict) Log-
Submodular Markup Rate: $\mathcal{E}'_{Z}\left(\frac{\psi}{A}\right) = \rho'\left(\frac{\psi}{A}\right) = \mathcal{E}'_{\mu}\left(\frac{\psi}{A}\right) \ge (>) < 0 \Leftrightarrow \frac{\partial^{2}\ln(Z(\psi/A))}{\partial\psi\partial A} = \frac{\partial^{2}\ln\mu(\psi/A)}{\partial\psi\partial A} \le (<)0,$ For the strict case, more competitive pressures $(A \downarrow) \Rightarrow$ proportionately smaller rate decline among high- ψ firms. \Rightarrow a smaller dispersion of the markup rate across firms.Under A2+A3Strict Log-Supermodular
Revenue: $\mathcal{E}'_{\ell}\left(\frac{\psi}{A}\right) < 0 \Leftrightarrow \frac{\partial^{2}\ln r(\psi/A)}{\partial\psi\partial A} > 0$ Strict Log-Supermodular
Employment: $\mathcal{E}'_{\ell}\left(\frac{\psi}{A}\right) = \mathcal{E}'_{r}\left(\frac{\psi}{A}\right) - \mathcal{E}'_{\mu}\left(\frac{\psi}{A}\right) < 0 \Leftrightarrow \frac{\partial^{2}\ln\ell(\psi/A)}{\partial\psi\partial A} > 0.$

More competitive pressures $(A \downarrow) \rightarrow$ proportionately larger decline in the revenue among high- ψ firms \rightarrow a larger dispersion of the revenue across firms; more concentration of revenue among the productive.

A2+A3: Cross-Sectional Implications of $A \downarrow$ on Profit and Markup Rate



✓ With ln ψ in the horizontal axis, $A \downarrow$ causes a parallel leftward shift of the graphs in these figures. ✓ $f(\psi/A)$ is strictly log-super(sub)modular in ψ and A iff ln $f(e^x)$ is concave(convex) in x.

A2+A3: More Cross-Sectional Implications

Lemma 6: Under A2 and the weak A3, $\lim_{\psi/A \to 0} \rho(\psi/A) \sigma(\psi/A) < 1 < \lim_{\psi/A \to \overline{z}} \rho(\psi/A) \sigma(\psi/A)$.

Since A2+A3 also implies $\mathcal{E}'_{\ell}(\psi/A) < 0$,

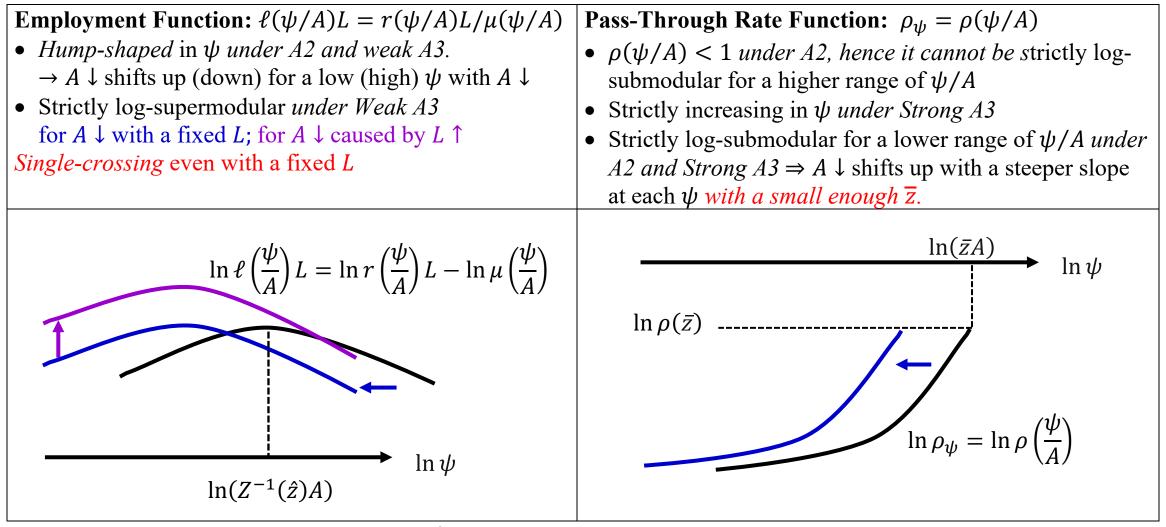
Proposition 4: Under A2 and the weak A3, the employment function, $\ell(\psi/A) = \frac{r(\psi/A)}{\mu(\psi/A)}$ is hump-shaped, with its unique peak is reached at, $\hat{z} \equiv Z(\hat{\psi}/A) < \overline{z}$, where

$$\mathcal{E}_{s(\zeta-1)/\zeta}(\hat{z}) = 0 \Leftrightarrow \frac{\hat{z}\zeta'(\hat{z})}{\zeta(\hat{z})} = [\zeta(\hat{z}) - 1]^2 \Leftrightarrow \mathcal{E}_{\ell}\left(\frac{\hat{\psi}}{A}\right) = 0 \Leftrightarrow \rho\left(\frac{\hat{\psi}}{A}\right)\sigma\left(\frac{\hat{\psi}}{A}\right) = 1.$$

A2+A3 are sufficient but not necessary for being hump-shaped.

Corollary of Proposition 4: Employments across active firms are \circ increasing in ψ if $\psi_c < \hat{\psi} \Leftrightarrow F/L > \pi(\hat{\psi}/A) = \pi(Z^{-1}(\hat{z}))$; This occurs when the overhead/market size ratio is sufficiently high. \circ hump-shaped in ψ if $\psi < \hat{\psi} < \psi_c \Leftrightarrow F/L < \pi(\hat{\psi}/A) = \pi(Z^{-1}(\hat{z})) \& A > \psi/Z^{-1}(\hat{z})$. Employments are decreasing among the most productive firms. \circ decreasing in ψ , if $\hat{\psi} < \psi \Leftrightarrow A < \psi/Z^{-1}(\hat{z})$, which is possible only if $\psi > 0$.

Proposition 5: Suppose that A2 and the strong A3 hold, so that $0 < \rho(\psi/A) < 1$ and $\rho(\psi/A)$ is strictly increasing. Then, $\rho(\psi/A)$ is strictly log-submodular for all $\psi/A < \overline{z}$ with a sufficiently small \overline{z} .



In summary, more competitive pressures $(A \downarrow)$

- $\mu(\psi/A) \downarrow$ under A2 & $\rho(\psi/A) \uparrow$ under strong A3
- Profit, Revenue, Employment become more concentrated among the most productive.

Comparative Statics: General Equilibrium Effects

Comparative Statics: General Equilibrium Effects of F_e , L, and F on ψ_c and A

Proposition 6:

$$\begin{bmatrix} d \ln A \\ d \ln \psi_c \end{bmatrix} = \frac{\mathbb{E}_1(\pi)}{\mathbb{E}_1(\ell)} \begin{bmatrix} 1 - f_x & f_x \\ 1 - f_x & f_x - \delta \end{bmatrix} \begin{bmatrix} d \ln(F_e/L) \\ d \ln(F/L) \end{bmatrix}$$

where

$$\frac{\mathbb{E}_{1}(\pi)}{\mathbb{E}_{1}(\ell)} = \frac{1}{\mathbb{E}_{\pi}(\sigma) - 1} = \{\mathbb{E}_{r}[\mu^{-1}]\}^{-1} - 1 = \mathbb{E}_{\ell}(\mu) - 1 > 0;$$

The average profit/the average labor cost ratio among the active firms

$$f_x \equiv \frac{FG(\psi_c)}{F_e + FG(\psi_c)} = \frac{\pi(\psi_c/A)}{\mathbb{E}_1(\pi)} < 1;$$

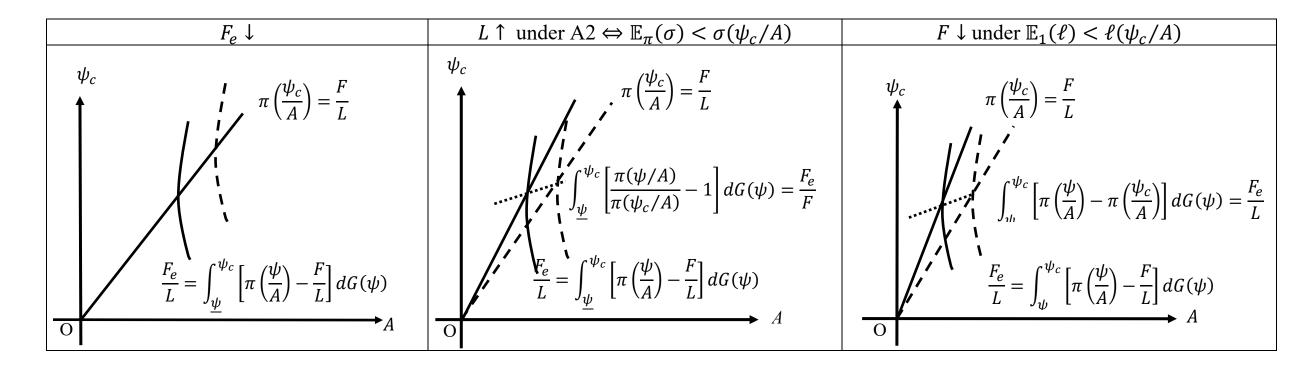
The share of the overhead in the total expected fixed cost = to the profit of the cut-off firm relative to the average profit among the active firms

$$\delta \equiv \frac{\mathbb{E}_{\pi}(\sigma) - 1}{\sigma(\psi_c/A) - 1} = \frac{\pi(\psi_c/A)}{\ell(\psi_c/A)} \frac{\mathbb{E}_1(\ell)}{\mathbb{E}_1(\pi)} \equiv f_x \frac{\mathbb{E}_1(\ell)}{\ell(\psi_c/A)} > 0.$$

The profit/labor cost ratio of the cut-off firm to the average profit/average labor cost ratio among the active firms.

Corollary of Proposition 6

	A	ψ_c/A	ψ_c
F _e	$\frac{dA}{dF_e} > 0$	$\frac{d(\psi_c/A)}{dF_e} = 0$	$\frac{d\psi_c}{dF_e} > 0$
L	$\frac{dA}{dL} < 0$	$\frac{d(\psi_c/A)}{dL} > 0$	$\frac{d\psi_c}{dL} < 0 \Leftrightarrow \mathbb{E}_{\pi}(\sigma) < \sigma\left(\frac{\psi_c}{A}\right), \text{ which holds globally if } \sigma'(\cdot) > 0, \text{ i.e., under A2}$
F	$\frac{dA}{dF} > 0$	$\frac{d(\psi_c/A)}{dF} < 0$	$\frac{d\psi_c}{dF} > 0 \iff \mathbb{E}_1(\ell) < \ell\left(\frac{\psi_c}{A}\right), \text{ which holds globally if } \ell'(\cdot) > 0$



Market Size Effect on Profit, $\Pi_{\psi} \equiv \pi(\psi/A)L$ and Revenue, $R_{\psi} \equiv r(\psi/A)L$ (Proposition 7)

7a: Under A2, there exists a unique
$$\psi_0 \in (\underline{\psi}, \psi_c)$$
 such that
 $\sigma\left(\frac{\psi_0}{A}\right) = \mathbb{E}_{\pi}(\sigma)$ with
 $\frac{d \ln \Pi_{\psi}}{d \ln L} > 0 \Leftrightarrow \sigma\left(\frac{\psi}{A}\right) < \mathbb{E}_{\pi}(\sigma)$ for $\psi \in (\underline{\psi}, \psi_0)$,
and
 $\frac{d \ln \Pi_{\psi}}{d \ln L} < 0 \Leftrightarrow \sigma\left(\frac{\psi}{A}\right) > \mathbb{E}_{\pi}(\sigma)$ for $\psi \in (\psi_0, \psi_c)$.
7b: Under A2 and the weak A3, there exists $\psi_1 > \psi_0$, such that
 $\frac{d \ln R_{\psi}}{d \ln L} > 0$ for $\psi \in (\underline{\psi}, \psi_1)$.
Furthermore, $\psi_1 \in (\psi_0, \psi_c)$ and
 $\frac{d \ln R_{\psi}}{d \ln L} < 0$ for $\psi \in (\psi_1, \psi_c)$,
for a sufficiently small *F*.

$$\ln \Pi_{\psi} = \ln \pi \left(\frac{\psi}{A}\right) + \ln L$$

$$\ln R_{\psi} = \ln r \left(\frac{\psi}{A}\right) + \ln L$$

$$\ln \psi$$

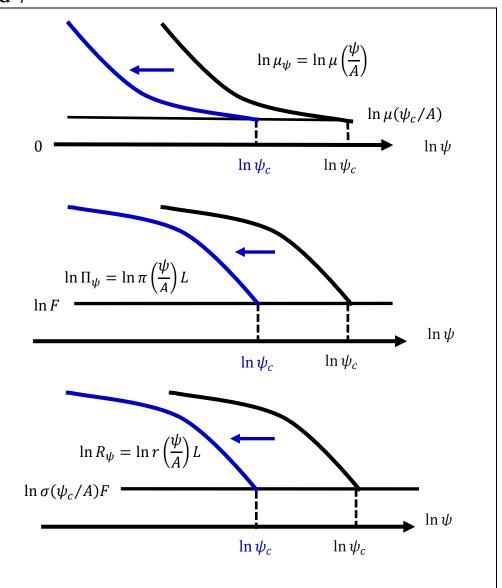
In short, more productive firms expand in absolute terms, while less productive firms shrink.

 $F_e \downarrow$ under A2 and the weak A3

 $A \downarrow$, $\psi_c \downarrow$ with ψ_c / A unchanged

The cutoff firms before the change and the cutoff firms after the change have

- the same markup rate $\mu(\psi_c/A)$
- the same profit $\pi(\psi_c/A)L = F$
- the same revenue, $r(\psi_c/A)L$



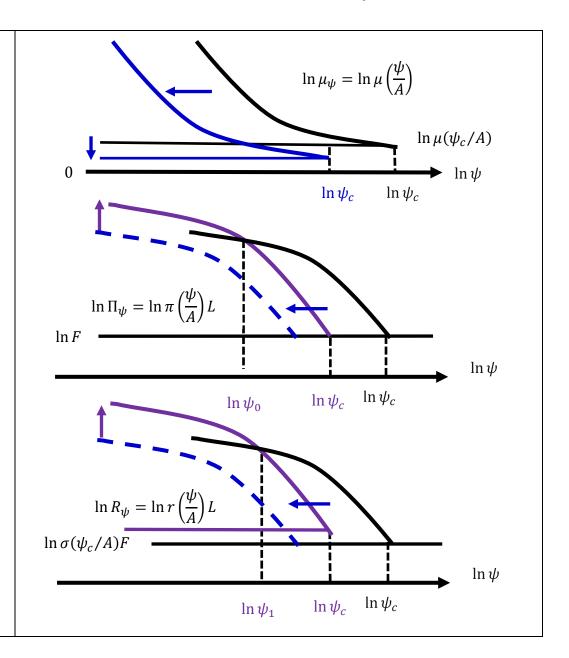
L \uparrow under A2 and the weak A3

 $A \downarrow$, $\psi_c \downarrow$ with $\psi_c / A \uparrow$ and $\sigma(\psi_c / A) \uparrow$

Compared to the cutoff firms before the change, the cutoff firms after the change have

- a lower markup rate, $\mu(\psi_c/A) \downarrow$
- the same profit, $\pi(\psi_c/A)L = F$.
- a higher revenue, $r(\psi_c/A)L = \sigma(\psi_c/A)F$ \uparrow

Profits up (down) for firms with $\psi < (>)\psi_0$; Revenues up (down) for firms with $\psi < (>)\psi_1$ for a sufficiently small *F*.

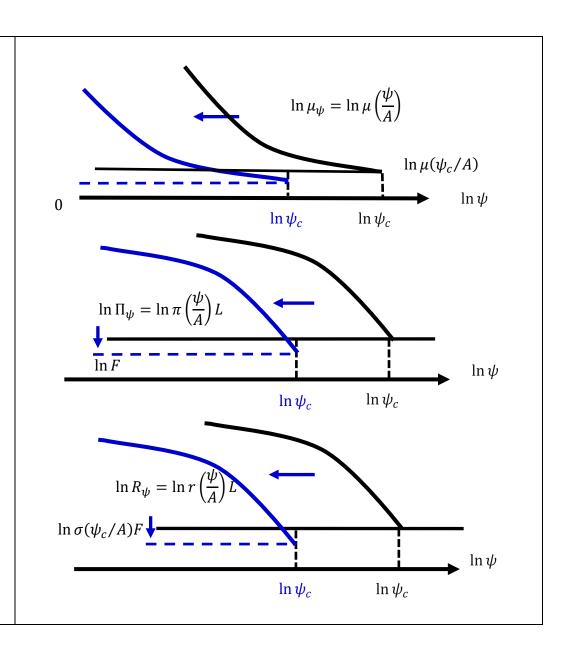


 $F \downarrow$ under A2 and the weak A3 with $\ell'(\cdot) > 0$

 $A \downarrow, \psi_c \downarrow \text{with } \psi_c / A \uparrow \text{and } \sigma(\psi_c / A) \uparrow$

Compared to the cutoff firms before the change, the cutoff firms after the change have

- a lower markup rate, $\mu(\psi_c/A) \downarrow$
- a lower profit, $\pi(\psi_c/A)L = F \downarrow$.
- a lower revenue, $r(\psi_c/A)L = \sigma(\psi_c/A)F \downarrow$.



The Composition Effect: Average Markup and Pass-Through Rates

- Under A2, $A \downarrow$ causes $\mu(\psi/A) \downarrow$ for each ψ , but distribution shifts toward low- ψ firms with higher $\mu(\psi/A)$.
- Under strong A3, $A \downarrow$ causes $\rho(\psi/A) \uparrow$ for each ψ , but distribution shifts toward low- ψ firms with lower $\rho(\psi/A)$.

Proposition 8: Assume that $\mathcal{E}'_g(\cdot)$ does not change its sign and $\underline{\psi} = 0$. Consider a shock to F_e , L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of any weighted generalized mean of any monotone function, $f(\psi/A) > 0$, defined by

$$I \equiv \mathcal{M}^{-1}\left(\mathbb{E}_{w}(\mathcal{M}(f))\right)$$

with a monotone transformation $\mathcal{M}: \mathbb{R}_+ \to \mathbb{R}$ and a weighting function, $w(\psi/A) > 0$, satisfies:

	$f'(\cdot) > 0$	$f'(\cdot) = 0$	$f'(\cdot) < 0$
$\mathcal{E}'_g(\cdot) > 0$	$d\ln(\psi_c/A)$ $d\ln I$	$d \ln I = 0$	$d\ln(\psi_c/A) = d\ln I$
0	$\frac{d \ln A}{d \ln A} \ge 0 \Longrightarrow \frac{d \ln A}{d \ln A} \ge 0$	$\frac{1}{d \ln A} = 0$	$\underline{-\frac{d\ln A}{d\ln A}} \ge 0 \Longrightarrow \frac{d\ln A}{d\ln A} < 0$
$\mathcal{E}'_g(\cdot) = 0$ (Pareto)	$d\ln(\psi_c/A) \ge \alpha + \frac{d\ln I}{2} \ge \alpha$	$d \ln I = 0$	$d\ln(\psi_c/A) \ge \alpha + \frac{d\ln I}{s} \le \alpha$
0	$-\underline{d \ln A} \leqslant 0 \Leftrightarrow \frac{d \ln A}{d \ln A} \leqslant 0$	$\frac{1}{d \ln A} = 0$	$\frac{d \ln A}{d \ln A} \ge 0 \iff \frac{d \ln A}{d \ln A} \ge 0$
$\mathcal{E}'_g(\cdot) < 0$	$d\ln(\psi_c/A) = d\ln I$	$d \ln I = 0$	$d\ln(\psi_c/A)$ $d\ln I$
	$\frac{d \ln A}{d \ln A} \le 0 \Longrightarrow \frac{d \ln A}{d \ln A} \le 0$	$\frac{1}{d \ln A} \equiv 0$	$\frac{d \ln A}{d \ln A} \le 0 \Longrightarrow \frac{d \ln A}{d \ln A} > 0$

Moreover, if $\mathcal{E}'_{g}(\cdot) = \frac{d \ln(\psi_{c}/A)}{d \ln A} = 0$, $d \ln I/d \ln A = 0$ for any $f(\psi/A)$, monotonic or not. Furthermore, $\mathcal{E}'_{g}(\cdot)$ can be replaced with $\mathcal{E}'_{G}(\cdot)$ in all the above statements for $w(\psi/A) = 1$, i.e., the unweighted averages.

 $\mathcal{E}'_{G}(\cdot)$ in all the above statements for $w(\psi/A) = 1$, i.e., the unweighted averages. The arithmetic, $I = (\mathbb{E}_{w}(f))$, geometric, $I = \exp[\mathbb{E}_{w}(\ln f)]$, harmonic, $I = (\mathbb{E}_{w}(f^{-1}))^{-1}$, means are special cases. The weight function, $w(\psi/A)$, can be profit, revenue, and employment.

Corollary 1 of Proposition 8 a) Entry Cost: $f'(\cdot)\mathcal{E}'_g(\cdot) \gtrless 0 \Leftrightarrow \frac{d \ln I}{d \ln F_e} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln F_e} \gtrless 0$. b) Market Size: If $\mathcal{E}'_g(\cdot) \le 0$, then, $f'(\cdot) \gtrless 0 \Rightarrow \frac{d \ln I}{d \ln L} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln L} \gtrless 0$. c) Overhead Cost: If $\mathcal{E}'_g(\cdot) \le 0$, then, $f'(\cdot) \gtrless 0 \Rightarrow \frac{d \ln I}{d \ln F} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln F} \lessgtr 0$. Furthermore, $\mathcal{E}'_g(\cdot)$ can be replaced with $\mathcal{E}'_G(\cdot)$ for $w(\psi/A) = 1$, i.e., the unweighted averages.

For the entry cost, $\frac{d \ln(\psi_c/A)}{d \ln A} = 0.$

- $\mathcal{E}'_{g}(\cdot) > 0$; sufficient & necessary for the composition effect to dominate:
 - The average markup & pass-through rates move in the opposite direction from the firm-level rates
- $\mathcal{E}'_g(\cdot) = 0$ (Pareto); a knife-edge. $A \downarrow \rightarrow$ no change in average markup and pass-through.
- $\mathcal{E}'_g(\cdot) < 0$; sufficient & necessary for the procompetitive effect to dominate: The average markup & pass-through rates move in the *same* direction from the firm-level rates

For market size and the overhead cost, $\frac{d \ln(\psi_c/A)}{d \ln A} < 0$

- $\mathcal{E}'_{g}(\cdot) > 0$; necessary for the composition effect to dominate:
- $\mathcal{E}'_{q}(\cdot) \leq 0$; sufficient for the procompetitive effect to dominate:

The Composition Effect: Impact on P/A

$$\ln\left(\frac{A}{cP}\right) = \mathbb{E}_{r}[\Phi \circ Z]$$
$$\zeta'(\cdot) \gtrless 0 \implies \Phi'(\cdot) \gneqq 0 \Leftrightarrow \Phi \circ Z'(\cdot) \gneqq 0$$

Corollary 2 of Proposition 8: Assume $\underline{\psi} = 0$, and neither $\zeta'(\cdot)$ nor $\mathcal{E}'_g(\cdot)$ change the signs. Consider a shock to F_e , L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of P/A satisfies:

	$\zeta'(\cdot) > 0 \text{ (A2)}$	$\zeta'(\cdot) = 0 \text{ (CES)}$	$\zeta'(\cdot) < 0$
$\mathcal{E}_g'(\cdot)>0$	$\frac{d\ln(\psi_c/A)}{d\ln A} \ge 0 \Longrightarrow \frac{d\ln(P/A)}{d\ln A} > 0$	uIIIA	$\frac{d\ln(\psi_c/A)}{d\ln A} \ge 0 \Longrightarrow \frac{d\ln(P/A)}{d\ln A} < 0$
$\mathcal{E}'_g(\cdot) = 0$ (Pareto)	$\frac{d\ln(\psi_c/A)}{d\ln A} \gtrless 0 \Leftrightarrow \frac{d\ln(P/A)}{d\ln A} \gtrless 0$	$\frac{d\ln(P/A)}{d\ln A} = 0$	$\left \frac{d \ln(\psi_c/A)}{d \ln A} \gtrless 0 \Leftrightarrow \frac{d \ln(P/A)}{d \ln A} \lessapprox 0 \right $
$\mathcal{E}_g'(\cdot) < 0$	$\frac{d\ln(\psi_c/A)}{d\ln A} \le 0 \Longrightarrow \frac{d\ln(P/A)}{d\ln A} < 0$	$\frac{d\ln(P/A)}{d\ln A} = 0$	$\frac{d\ln(\psi_c/A)}{d\ln A} \le 0 \Longrightarrow \frac{d\ln(P/A)}{d\ln A} > 0$

Comparative Statics on $M\& MG(\psi_c)$

proposition 9: Assume that $\mathcal{E}'_{G}(\cdot)$ does not change its sign and $\underline{\psi} = 0$. Consider a shock to F_{e} , F, and/or L, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of the mass of active firms, $MG(\psi_{c})$, is as follows:

$$If \ \mathcal{E}'_{G}(\cdot) > 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \ge 0 \Longrightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} > 0;$$
$$If \ \mathcal{E}'_{G}(\cdot) = 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \geqq 0 \Leftrightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} \geqq 0;$$
$$If \ \mathcal{E}'_{G}(\cdot) < 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \le 0 \Longrightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} < 0.$$

Corollary 1 of Proposition 9
a) Entry Cost:
$$\mathcal{E}'_{G}(\cdot) \gtrless 0 \Leftrightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln F_{e}} = \frac{d \ln[MG(\psi_{c})]}{d \ln A} \frac{d \ln A}{d \ln F_{e}} \gtrless 0.$$

b) Market Size: $\mathcal{E}'_{G}(\cdot) \le 0 \Rightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln L} = \frac{d \ln[MG(\psi_{c})]}{d \ln A} \frac{d \ln A}{d \ln L} > 0.$
c) Overhead Cost: $\mathcal{E}'_{G}(\cdot) \le 0 \Rightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln F} = \frac{d \ln[MG(\psi_{c})]}{d \ln A} \frac{d \ln A}{d \ln F} < 0.$

For a decline in the entry cost,

 $\mathcal{E}'_{g}(\cdot) > 0$ sufficient & necessary for $MG(\psi_{c}) \downarrow$; $\mathcal{E}'_{g}(\cdot) = 0$, no effect; $\mathcal{E}'_{g}(\cdot) < 0$; sufficient & necessary for $MG(\psi_{c}) \uparrow$ For market size and the overhead cost

 $\mathcal{E}'_{g}(\cdot) > 0$ necessary for $MG(\psi_{c}) \downarrow; \mathcal{E}'_{g}(\cdot) \leq 0$ sufficient for $MG(\psi_{c}) \uparrow$

Impact of Competitive Pressures on Unit Cost/TFP

By combining Corollary 2 of Proposition 8 and Corollary 1 of Proposition,

Core	Corollary 2 of Proposition 9: Assume $\psi = 0$, and neither $\zeta'(\cdot)$ nor $\mathcal{E}'_g(\cdot)$ change the signs. Consider a shock to F_e ,						
L, an	L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of P satisfies:						
		$\zeta'(\cdot) > 0$ (A2)	$\zeta'(\cdot) = 0$ (CES)	$\zeta'(\cdot) < 0$			
	$\mathcal{E}_g'(\cdot)>0$	$\frac{d\ln P}{d\ln A} > 1 \text{ for } F_e$	$\frac{d\ln P}{d\ln A} = 1$?			
	$\mathcal{E}'_g(\cdot) = 0$ (Pareto)	$\frac{d \ln P}{d \ln A} = 1 \text{ for } F_e$ $0 < \frac{d \ln P}{d \ln A} < 1 \text{ for } F \text{ or } L;$	$\frac{d\ln P}{d\ln A} = 1$	$\frac{d \ln P}{d \ln A} = 1 \text{ for } F_e$ $\frac{d \ln P}{d \ln A} > 1 \text{ for } F \text{ or } L$			
	$\mathcal{E}_g'(\cdot) < 0$	$0 < \frac{d \ln P}{d \ln A} < 1$	$\frac{d\ln P}{d\ln A} = 1$	$\frac{d\ln P}{d\ln A} > 1$			

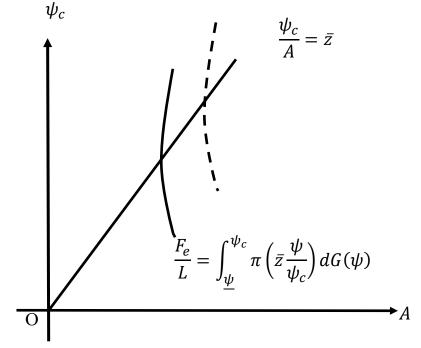
Limit Case of $F \rightarrow 0$ with $\overline{z} < \infty$

Cutoff Rule:	$\pi\left(\frac{\psi_c}{A}\right) = 0 \Leftrightarrow \frac{\psi_c}{A} = \bar{z} = \pi^{-1}(0)$
Free Entry Condition:	$\frac{F_e}{L} = \int_{\underline{\psi}}^{\psi_c} \pi\left(\bar{z}\frac{\psi}{\psi_c}\right) dG(\psi) = \int_{\underline{\psi}}^{\bar{z}A} \pi\left(\frac{\psi}{A}\right) dG(\psi).$

A and ψ_c : uniquely determined as C^2 functions of F_e/L with the interior solution, $0 < G(\psi_c) < 1$ for

$$0 < \frac{F_e}{L} < \int_{\underline{\psi}}^{\overline{\psi}} \pi\left(\bar{z}\frac{\psi}{\bar{\psi}}\right) dG(\psi).$$
$$\frac{d\psi_c}{\psi_c} = \frac{dA}{A} = \frac{1}{\mathbb{E}_{\pi}(\sigma) - 1} \frac{d(F_e/L)}{F_e/L}$$
$$\frac{dM}{d(F_e/L)} < 0; \quad \mathcal{E}'_G(\psi) \leqq 0 \Leftrightarrow \frac{d[MG(\psi_c)]}{d(F_e/L)} \leqq 0$$

 $L \uparrow$ is isomorphic to $F_e \downarrow$.



$F_e/L \downarrow$ for $F \rightarrow 0$ with $\overline{z} < \infty$ under A2 and the weak A3

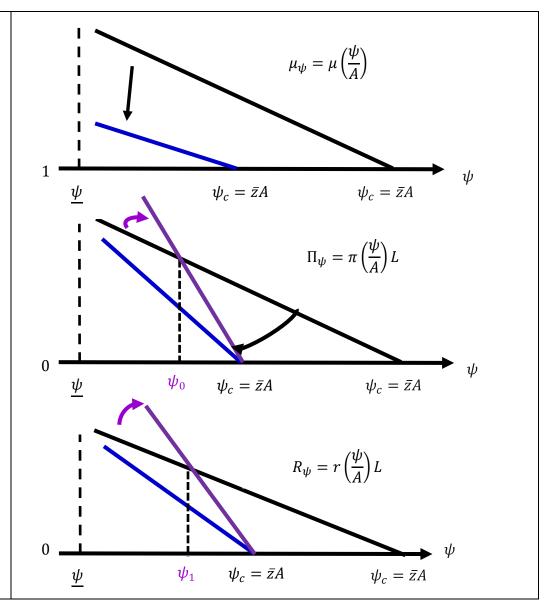
 $A \downarrow, \psi_c \downarrow$ with $\psi_c / A = \overline{z}$ unchanged.

The cutoff firms always (i.e., both before and after the change) have

- $\mu(\psi_c/A) = 1$
- $\pi(\psi_c/A)L = 0.$
- $r(\psi_c/A)L = 0.$

Profits up (down) for firms with $\psi < (>)\psi_0$; Revenues up (down) for firms with $\psi < (>)\psi_1$.

In the middle and the lower panels, Blue : the effects of $F_e/L \downarrow$ due to $F_e \downarrow$ Purple: the effects of $F_e/L \downarrow$ due to $L \uparrow$



Sorting of Heterogeneous Firms: A Multi-Market Setting

A Multi-Market Extension: J markets, j = 1, 2, ..., J, with market size L_i .

Possible Interpretations

- Identical Households with Cobb-Douglas preferences, $\sum_{j=1}^{J} \beta_j \ln X_j$ with $\sum_{j=1}^{J} \beta_j = 1$. Then, $L_j = \beta_j L$.
- *J* types of consumers, with *L_j* equal to the total income of type-*j* consumers. "Types" can be their "tastes" or "locations", etc.

Assume

- Market size is the only exogenous source of heterogeneity across markets: Index them as $L_1 > L_2 > \dots > L_I > 0$.
- Labor is fully mobile, equalizing the wage across the markets. We continue to use it as the *numeraire*.
- Firm's marginal cost, ψ , is independent of the market it chooses.
 - Each firm pays $F_e > 0$ to draw its marginal cost $\psi \sim G(\psi)$.
 - Knowing its ψ , each firm decides which market to enter and produce with an overhead cost, F > 0, or exit without producing.
 - Firms sell their products at the profit-maximizing prices in the market they enter.

Equilibrium Condition:

$$F_{e} = \int_{\underline{\psi}}^{\psi} \max\{\Pi_{\psi} - F, 0\} dG(\psi) = \int_{\underline{\psi}}^{\psi} \max\{\max_{1 \le j \le J}\{\Pi_{j\psi}\} - F, 0\} dG(\psi)$$
where
$$\Pi_{j\psi} \equiv \frac{s\left(Z(\psi/A_{j})\right)}{\zeta\left(Z(\psi/A_{j})\right)} L_{j} \equiv \frac{r(\psi/A_{j})}{\sigma(\psi/A_{j})} L_{j} = \pi\left(\frac{\psi}{A_{j}}\right) L_{j}$$

Proposition 10: Equilibrium Characterization under A2 Larger markets are more competitive: $0 < A_1 < A_2 < \dots < A_J < \infty$, where $M \int_{\psi_{i-1}}^{\psi_j} r\left(\frac{\psi}{A_i}\right) dG(\psi) = 1$. Note: Because $\pi(\cdot)$ is strictly decreasing, this implies $\pi(\psi/A_1) < \pi(\psi/A_2) < \cdots < \pi(\psi/A_1)$ for all ψ . More productive firms self-select into larger markets (Positive Assortative Matching) Firms with $\psi \in (\psi_{j-1}, \psi_j)$ enter market-*j* and those with $\psi \in (\psi_j, \infty)$ do not enter any market, where $0 \leq \underline{\psi} = \psi_0 < \psi_1 < \psi_2 < \dots < \psi_J < \overline{\psi} \leq \infty \quad \text{where } \frac{\pi(\psi_j/A_j)L_j}{\pi(\psi_i/A_{i+1})L_{i+1}} = 1 \text{ for } 1 \leq j \leq J-1; \quad \pi\left(\frac{\psi_J}{A_J}\right)L_J \equiv F$ Note: ψ_i -firms are indifferent btw entering Market-*j* & entering Market-(*j* + 1). $\sum_{j=1}^{J} \int_{\psi_{j}}^{\psi_{j}} \left\{ \pi\left(\frac{\psi}{A_{i}}\right) L_{j} - F \right\} dG(\psi) = F_{e}$ **Free Entry Condition:** Mass of Firms in Market-j: $M[G(\psi_i) - G(\psi_{i-1})] > 0$

Logic Behind Sorting

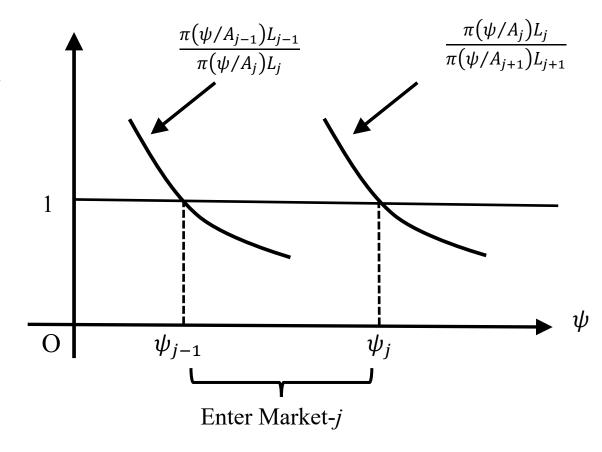
$$L_j > L_{j+1} \Longrightarrow A_j < A_{j+1}$$
. Otherwise, no firm would enter $j + 1$.
 $\Rightarrow \frac{\pi(\psi/A_j)}{\pi(\psi/A_{j+1})}$ strictly decreasing in ψ
due to strict log-supermodularity of $\pi(\psi/A)$ under A2

$$\Rightarrow \left[\frac{\Pi_{j\psi}}{\Pi_{(j+1)\psi}} = \frac{\pi(\psi/A_j)L_j}{\pi(\psi/A_{j+1})L_{j+1}} \gtrless 1 \Leftrightarrow \psi \gneqq \psi_j\right]$$

- Under CES, $\frac{\pi(\psi/A_j)L_j}{\pi(\psi/A_{j+1})L_{j+1}}$ is independent of ψ . $\Rightarrow \frac{\Pi_{j\psi}}{\Pi_{(j+1)\psi}} = \frac{\pi(\psi/A_j)L_j}{\pi(\psi/A_{j+1})L_{j+1}} = 1$ in equilibrium.
- \Rightarrow Firms indifferent across all markets.
- \Rightarrow Distribution of firms across markets is indeterminate.

Our mechanism generates sorting through competitive pressures. As such,

- complementary to agglomeration-economies-based mechanisms offered by Gaubert (2018) and Davis-Dingel (2019)
- justifies the equilibrium selection criterion used by Baldwin-Okubo (2006), which use CES, as a limit argument.



K. Matsuyama and P. Ushchev

Cross-Sectional, Cross-Market Implications:

Profits: Under A2

$$L_j > L_{j+1} \Longrightarrow A_j < A_{j+1} \Longrightarrow \left[\frac{\pi(\psi/A_j)L_j}{\pi(\psi/A_{j+1})L_{j+1}} \gtrless 1 \Leftrightarrow \psi \gneqq \psi_j \right]$$

$$\Pi_{\psi} = \max_{j} \left\{ \pi \left(\frac{\psi}{A_{j}} \right) L_{j} \right\}, \text{ the upper-envelope of } \pi \left(\psi/A_{j} \right) L_{j}, \text{ is continuous } -\frac{\psi}{2}$$

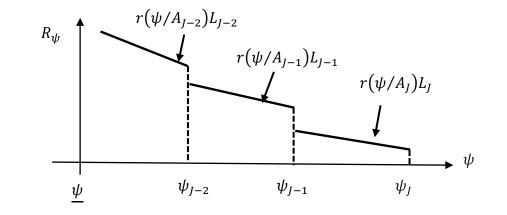
and decreasing in ψ , with the kinks at ψ_{j} .

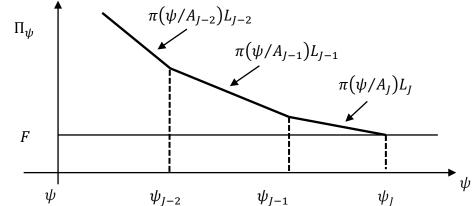
Continuous, since the lower markup rate in Market-*j* cancels out its larger market size, keeping ψ_j -firms indifferent btw Market-*j* & Market-(*j* + 1).

Revenues: Under A2

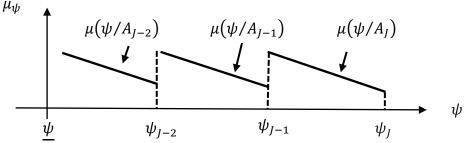
$$\frac{r(\psi_j/A_j)L_j}{r(\psi_j/A_{j+1})L_{j+1}} = \frac{\sigma(\psi_j/A_j)\pi(\psi_j/A_j)L_j}{\sigma(\psi_j/A_{j+1})\pi(\psi_j/A_{j+1})L_{j+1}} = \frac{\sigma(\psi_j/A_j)}{\sigma(\psi_j/A_{j+1})} > 1$$

 R_{ψ} : continuously decreasing in ψ within each market; jumps down at ψ_j . With the markup rate lower in Market-*j*, ψ_j -firms need to earn higher revenue to keep them indiffierent btw Market-*j* & and Market-(*j* + 1).

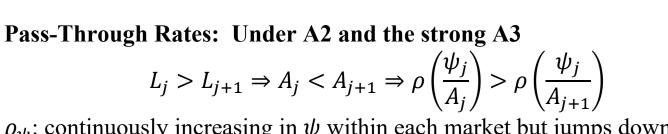




Markup Rates: Under A2 $L_j > L_{j+1} \Rightarrow A_j < A_{j+1} \Rightarrow \sigma\left(\frac{\psi_j}{A_i}\right) > \sigma\left(\frac{\psi_j}{A_{i+1}}\right) \Leftrightarrow \mu\left(\frac{\psi_j}{A_i}\right) < \mu\left(\frac{\psi_j}{A_{i+1}}\right)$ $\mu(\psi/A_{I-2})$ μ_{ψ} : continuously decreasing in ψ within each market but jumps up at ψ_i .

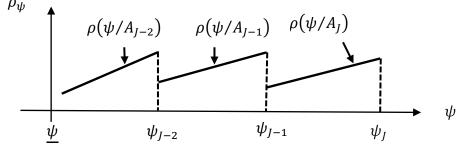


- The average markup rates may be *higher* in larger (and hence more competitive) markets. \bullet
- The average markup rates in all markets may go up, even if all markets become more competitive $(A_i \downarrow)$.



 ρ_{ψ} : continuously increasing in ψ within each market but jumps down at ψ_i .

- ψ_{J-1} ψ_{I-2} ψ The average pass-through rates may be *lower* in larger (and hence more competitive) markets.
- The average pass-through rates in all markets go *down* even if all markets become more competitive $(A_i \downarrow)$.



Average Markup and Pass-Through Rates in a Multi-Market Model: The Composition Effect

Proposition 11a: Suppose A2 and $G(\psi) = (\psi/\overline{\psi})^{\kappa}$. There exists a sequence, $L_1 > L_2 > \cdots > L_J > 0$, such that, in equilibrium, any weighted generalized mean of $f(\psi/A_j)$ across firms operating at market-j are increasing (decreasing) in j even though $f(\cdot)$ is increasing (decreasing) and hence $f(\psi/A_j)$ is decreasing (increasing) in j. **Corollary of Proposition 11a:** An example with $G(\psi) = (\psi/\overline{\psi})^{\kappa}$, such that the average markup rates are higher (and

Corollary of Proposition 11a: An example with $G(\psi) = (\psi/\psi)$, such that the average markup rates are *higher* (and the average pass-through rates are *lower* under Strong A3) in larger markets.

Proposition 11b: Suppose A2 and $G(\psi) = (\psi/\overline{\psi})^{\kappa}$. Then, a change in F_e keeps i) the ratios $a_j \equiv \psi_{j-1}/\psi_j$ and $b_j \equiv \psi_j/A_j$ and

ii) any weighted generalized mean of $f(\psi/A_j)$ across firms operating at market-j, for any weighting function $w(\psi/A_j)$,

unchanged for all j = 1, 2, ..., J.

Corollary of Proposition 11b: $F_e \downarrow$ and $G(\psi) = (\psi/\overline{\psi})^{\kappa}$ offers a knife-edge case, where the average markup and pass-through rates of all markets remain unchanged.

A caution against testing A2/A3 by comparing the average markup & pass-through rates across space and time.

Appendices

Symmetric H.S.A. with Gross Substitutes: An Alternative (Equivalent) Definition

Market Share of ω depends *solely* on its own quantity normalized by the *common* quantity aggregator

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right), \quad \text{Where} \quad \int_{\Omega} s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega \equiv 1.$$

- $s^*: \mathbb{R}_{++} \to \mathbb{R}_+$: the market share function, with $0 < \mathcal{E}_{s^*}(y_\omega) < 1$, where $y_\omega \equiv x_\omega/A^*$ is the normalized quantity \circ If $\bar{z} \equiv s^{*'}(0) = \lim_{y \to 0} [s^*(y)/y] < \infty$, $\bar{z}A(\mathbf{p})$ is the choke price.
- $A^* = A^*(\mathbf{x})$: the common quantity aggregator defined implicitly by the adding up constraint $\int_{\Omega} s^*(x_{\omega}/A^*)d\omega \equiv 1$. $A^*(\mathbf{x})$ linear homogenous in \mathbf{x} for a fixed Ω . A larger Ω raises $A^*(\mathbf{x})$.

Two definitions equivalent with the one-to-one mapping, $s(z) \leftrightarrow s^*(y)$, defined by $s^* \equiv s(s^*/y)$ or $s \equiv s^*(s/z)$. CES if $s^*(y) = \gamma^{1/\sigma} y^{1-1/\sigma}$; CoPaTh if $s^*(y) = \left[(\gamma)^{\frac{\rho-1}{\rho}} + (y\bar{z})^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$ with $\rho \in (0,1)$. **Production Function:** $X(\mathbf{x}) = c^* A^*(\mathbf{x}) \exp \left\{ \int_{\Omega} \left[\int_{0}^{x_{\omega}/A^*(\mathbf{x})} s^*(\xi) \frac{d\xi}{\xi} \right] d\omega \right\}$ *Note:* Our 2020 paper proved

$$\left[1 - \frac{d\ln s(z)}{d\ln z}\right] \left[1 - \frac{d\ln s^*(y)}{d\ln y}\right] = 1$$

Our 2017 paper proved that X(x) is quasi-concave & that A*(x)/X(x) = P(p)/A(p) ≠ c for any c > 0 unless CES
 ✓ A*(x), the measure of *competitive pressures*, fully captures *cross quantity effects* in the inverse demand system
 ✓ X(x), the measure of output, captures the *output implications* of input changes

Labor Market Equilibrium: satisfied automatically from the Walras Law.

$$Labor Demand = M \left[F_e + \int_{\underline{\psi}}^{\psi_c} (x_{\psi}\psi + F) dG(\psi) \right] = M \left[F_e + FG(\psi_c) + \int_{\underline{\psi}}^{\psi_c} \ell\left(\frac{\psi}{A}\right) L dG(\psi) \right]$$
$$= LM \left[\int_{\underline{\psi}}^{\psi_c} \left[\pi\left(\frac{\psi}{A}\right) + \ell\left(\frac{\psi}{A}\right) \right] dG(\psi) \right] \qquad (\text{from the Free Entry Condition})$$
$$= LM \int_{\underline{\psi}}^{\psi_c} r\left(\frac{\psi}{A}\right) dG(\psi) = L \qquad (\text{from the Adding Up Constraint})$$

Three Parametric Families of H.S.A.

Generalized Translog:

$$\begin{split} s(z) &= \gamma \left(1 - \frac{\sigma - 1}{\eta} \ln \left(\frac{z}{\beta} \right) \right)^{\eta} = \gamma \left(- \frac{\sigma - 1}{\eta} \ln \left(\frac{z}{\bar{z}} \right) \right)^{\eta}; \ z < \bar{z} \equiv \beta e^{\frac{\eta}{\sigma - 1}} \\ & \Rightarrow \zeta(z) = 1 + \frac{\sigma - 1}{1 - \frac{\sigma - 1}{\eta} \ln \left(\frac{z}{\beta} \right)} = 1 - \frac{\eta}{\ln \left(\frac{z}{\bar{z}} \right)} > 1 \\ & \Rightarrow \eta z \zeta'(z) = [\zeta(z) - 1]^2 \Rightarrow \frac{z \zeta'(z)}{[\zeta(z) - 1]\zeta(z)} = \frac{1}{\eta} \left[1 - \frac{1}{\zeta(z)} \right] = \frac{1}{\eta - \ln \left(\frac{z}{\bar{z}} \right)} \end{split}$$

satisfying A2 but violating A3.

- CES is the limit case, as $\eta \to \infty$, while holding $\beta > 0$ and $\sigma > 1$ fixed, so that $\overline{z} \equiv \beta e^{\frac{\eta}{\sigma-1}} \to \infty$.
- Translog is the special case where $\eta = 1$.

•
$$z = Z\left(\frac{\psi}{A}\right)$$
 is given as the inverse of $\frac{\eta z}{\eta - \ln(z/\bar{z})} = \frac{\psi}{A}$;

- If $\eta \ge 1$, employment is globally decreasing in *z*;
- If $\eta < 1$, employment is hump-shaped with the peak, given by $\hat{z}/\bar{z} = \frac{\hat{\psi}}{(1-\eta)\bar{z}A} = \exp\left[-\frac{\eta^2}{1-\eta}\right] < 1$, decreasing in η .

Selection and Sorting of Heterogeneous Firms through Competitive Pressures

Constant Pass-Through (CoPaTh): Matsuyama-Ushchev (2020b). For $0 < \rho < 1$, $\sigma > 1$, $\bar{z} \equiv \beta \left(\frac{\sigma}{\sigma-1}\right)^{\frac{\rho}{1-\rho}}$

$$s(z) = \gamma \sigma^{\frac{\rho}{1-\rho}} \left[1 - \left(\frac{z}{\bar{z}}\right)^{\frac{1-\rho}{\rho}} \right]^{\frac{\rho}{1-\rho}} \Longrightarrow 1 - \frac{1}{\zeta(z)} = \left(\frac{z}{\bar{z}}\right)^{\frac{1-\rho}{\rho}} < 1 \Longrightarrow \mathcal{E}_{1-1/\zeta}(z) = -\mathcal{E}_{\zeta/(\zeta-1)}(z) = \frac{1-\rho}{\rho} > 0$$

satisfying A2 and the weak form of A3 (but not the strong form). Then, for $\psi/A < \overline{z}$,

$$p_{\psi} = (\bar{z}A)^{1-\rho}(\psi)^{\rho}; \qquad Z\left(\frac{\psi}{A}\right) = (\bar{z})^{1-\rho}\left(\frac{\psi}{A}\right)^{\rho};$$

$$\sigma\left(\frac{\psi}{A}\right) = \frac{1}{1-(\psi/\bar{z}A)^{1-\rho}}; \qquad \rho\left(\frac{\psi}{A}\right) = \rho$$

$$r\left(\frac{\psi}{A}\right) = \gamma\sigma^{\frac{\rho}{1-\rho}} \left[1-\left(\frac{\psi}{\bar{z}A}\right)^{1-\rho}\right]^{\frac{\rho}{1-\rho}}; \qquad \pi\left(\frac{\psi}{A}\right) = \gamma\sigma^{\frac{\rho}{1-\rho}} \left[1-\left(\frac{\psi}{\bar{z}A}\right)^{1-\rho}\right]^{\frac{1-\rho}{1-\rho}}; \qquad \ell\left(\frac{\psi}{A}\right) = \gamma\sigma^{\frac{\rho}{1-\rho}} \left[1-\left(\frac{\psi}{\bar{z}A}\right)^{1-\rho}\right]^{\frac{\rho}{1-\rho}}$$

with

- a constant pass-through rate, $0 < \rho < 1$.
- Employment hump-shaped with $\hat{z}/\bar{z} = (1-\rho)^{\frac{\rho}{1-\rho}} > \hat{\psi}/\bar{z}A = (1-\rho)^{\frac{1}{1-\rho}}$, both decreasing in ρ .
- CES is the limit case, as $\rho \to 1$, while holding $\beta > 0$ and $\sigma > 1$ fixed, so that $\sigma(\psi/A) \to \sigma$; $\bar{z} \equiv \beta \left(\frac{\sigma}{\sigma-1}\right)^{\frac{\rho}{1-\rho}} \to \infty$.

Power Elasticity of Markup Rate (Fréchet Inverse Markup Rate): For $\kappa \ge 0$ and $\lambda > 0$

$$s(z) = \exp\left[\int_{z_0}^{z} \frac{c}{c - \exp\left[-\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right] \exp\left[\frac{\kappa \xi^{-\lambda}}{\lambda}\right]} \frac{d\xi}{\xi}\right]$$

with either $\overline{z} = \infty$ and $c \le 1$ or $\overline{z} < \infty$ and c = 1. Then,

$$1 - \frac{1}{\zeta(z)} = c \exp\left[\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right] \exp\left[-\frac{\kappa z^{-\lambda}}{\lambda}\right] < 1 \Longrightarrow \mathcal{E}_{1-1/\zeta}(z) = -\mathcal{E}_{\zeta/(\zeta-1)}(z) = \kappa z^{-\lambda}$$

satisfying A2 and the strong form of A3 for $\kappa > 0$ and $\lambda > 0$. CES for $\kappa = 0$; $\bar{z} = \infty$; $c = 1 - \frac{1}{\sigma}$; CoPaTh for $\bar{z} < \infty$; c = 1; $\kappa = \frac{1-\rho}{\rho} > 0$, and $\lambda \to 0$.

•
$$\rho\left(\frac{\psi}{A}\right) = \frac{1}{1+\kappa(z_{\psi})^{-\lambda}}$$
, with $z_{\psi} = Z\left(\frac{\psi}{A}\right)$ given implicitly by $c \exp\left[\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right] z_{\psi} \exp\left[-\frac{\kappa(z_{\psi})^{-\lambda}}{\lambda}\right] \equiv \frac{\psi}{A}$,

- $\frac{\partial^2 \ln \rho(\psi/A)}{\partial A \partial \psi} \leq 0 \iff (\kappa)^{\frac{1}{\lambda}} \geq z_{\psi} = Z\left(\frac{\psi}{A}\right) \iff \frac{\psi}{A} \leq (\kappa)^{\frac{1}{\lambda}} c \exp\left[\frac{\kappa \bar{z}^{-\lambda} 1}{\lambda}\right]; \text{ Log-sub(super)modular among more (less)}$ efficient firms. In particular, if $\bar{z} < (\kappa)^{\frac{1}{\lambda}}, \frac{\partial^2 \ln \rho(\psi/A)}{\partial A \partial \psi} < 0$ for all $\psi/A < Z(\psi/A) < \bar{z} < \infty$.
- Employment hump-shaped with the peak at $\hat{z} = Z\left(\frac{\hat{\psi}}{A}\right) < \bar{z}$, given implicitly by

$$c\left(1+\frac{\hat{z}^{\lambda}}{\kappa}\right)\exp\left[-\frac{\kappa\hat{z}^{-\lambda}}{\lambda}\right]\exp\left[\frac{\kappa\bar{z}^{-\lambda}}{\lambda}\right] = 1 \iff \left(1+\frac{\hat{z}^{\lambda}}{\kappa}\right)\hat{z} = \frac{\hat{\psi}}{A}$$